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Abstract— Poincare plot analysis of RR time series allows a beat-
to-beat approach to Heart Rate Variability (HRV), detecting
patterns associated with nonlinear processes. Since the
measurement of standards descriptors of Poincare plot is based
on the point's distribution in relation to the line of identity (y=x),
we have concentrated on it and evaluated the points behavior
related to this line. For this purpose, we test two global and local
analyses of points against the identity line. For evaluating these
two novel features of Poincare plot, we try to use them for
distinguishing four groups of subjects (Arrhythmia, Congestive
Heart Failure (CHF), Atrial Fibrillation (AF) and Normal Sinus
Rhythm (NSR)). Kruskal-Wallis test was used to define the level
of significance of features. The results show that global feature
discriminate different groups by p<6E-7, and local feature
discriminate them by p<2E-7.
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L INTRODUCTION

Heart rate is an indicator of heart's condition [1].
Assessment of heart rate has been shown to aid clinical
diagnosis and intervention strategies. It has been proved that
nonlinear analysis of it might provide more valuable
information for the physiological interpretation of heart rate
fluctuations [2]. However, the variety of contradictory reports
in this field indicates that there is a need for a more rigorous
investigation of methods as aids to clinical evaluation [2]. The
nonlinear analysis of Heart Rate Variability (HRV) is a
valuable tool in both clinical practice and physiological
research reflecting the ability of the cardiovascular system.

The Poincare plot is a tool developed by Henry Poincare for
analyzing complex systems [1]. It has found its use in such
diverse fields as physics and astronomy, geophysics,
meteorology, mathematical biology and medical sciences. In
the context of medical sciences it is mainly used for
quantifying HRV and proves to be quite an effective measure
of this marker [3]. Poincare plot is a geometrical representation
of RR time series to demonstrate patterns of heart rate
dynamics resulting from nonlinear processes. Poincare plot
analysis of RR time series allows a beat-to-beat approach to
HRYV, detecting patterns associated with nonlinear processes. It
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is a familiar method for the analysis of two-dimensional
nonlinear dynamic systems[4]. Tulppo et. al. [5] fitted an
ellipse to the distribution of the poincare plot and defined two
standard descriptors SD1 and SD2 for quantification of the
poincare plot geometry. These standard descriptors represent
the minor axis and the major axis of the ellipse (Fig. 1) and
guide the visual inspection of the distribution. In case of HRV,
it reveals a useful visual pattern of the RR interval data by
representing both short and long term variations of the signal
[6]. But standard descriptors SD1 and SD2 are linear statistics
and hence the measures do not directly quantify the nonlinear
temporal variations in the time series contained in the poincare
plot. Moreover, the limitations of the SD1/SD2 analysis are
important to understand when attempting to investigate the
physiological mechanisms in a time series, or when analyzing
data where the occurrence of nonlinear behavior may be a
distinguishing feature between health and disease[6].

The identity line (y = x) in the poincare plot has a simple
physiological interpretation: the points on this line correspond
to equal consecutive RR intervals, the points above it
correspond to increasing heart rate and the points below this
line to decreasing heart rate[7].Since the measurement of
standards descriptors of poincare plot is based on the point's
distribution in relation to the line of identity (y=X), we have
concentrated on it and evaluated the points behavior related to
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Figure 1. Poincare plot of RR intervals of a healthy person with its
standard descriptors SD1 and SD2
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this line. For this purpose, we defined two global and local
analyses of points against the identity line. In global method,
we contemplate all points in Poincare plot and constructed a
3x1 vector by counting the points above, under, and on the
identity line. In local method, we focused on point to point
variations against the identity line. So the temporal aspects of
poincare plot have been detected. For this purpose, we
constructed a 3x3 matrix by counting the number of points
which have the same temporal variations against the identity
line.

For evaluating these two novel features of Poincare plot, we
try to use them for distinguishing four groups of subjects
(Arrhythmia, Congestive Heart Failure (CHF), Atrial
Fibrillation (AF) and Normal Sinus Rhythm (NSR)).

II.  POINCARE PLOT

A. Standard Descriptors

A standard poincare plot of RR interval is shown in figure
1. Given a time series RR = {RRj, RR,, ..., RR;, RR,:} the
standard poincare plot is a scattergram constructed by locating
points from the time series on the coordinate plane according to
the pairing (x;, y;) in which,

X= {Xl’ X2y +ens Xn} = {RR[, RRQ’ LX) RRH } (1)
y= {yb Y25 -ees Yn} = {RRZs RR39 EEEE) RRn+l } (2)

and i =1, 2, 3, ..., n and n is the number of points in the
poincare plot which is one less than the length of the RR time
series [7].

As mentioned above, SD1 and SD2 are two standard
descriptors of poincare plot. SD2 is defined as the standard
deviation of the projection of the poincare plot on the line of
identity (y = x), and SD1 is the standard deviation of projection
of the poincare plot on the line perpendicular to the line of
identity (y = -X) [3]. So we may define them as:

SD1 = (Var(d)))'"?, SD2=(Var(d,))"*  (3)
whereVar(d) is the variance of d, and
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Figure 2. Temporal dynamics of poincare plots with similar SD1 and SD2

B. Limitations of Standard Descriptors

Time is an implicit parameter in a poincare plot, so time-
sequence information is lost and onlydistributional information
is represented. So the lack of temporal information is the
primary limitation of the standard descriptors of the poincare
plot. SD1 and SD2 represent the distribution of signal in 2D
space and carries only shape information [6]. It should be noted
that many possible RR interval series result in identical plot
with exactly similar SD1 and SD2 values in spite of different
temporal structure [6]. Thus, the same plot can be generated by
data sets with differentunderlying dynamics[8].In Fig. 2, two
signals with similar SD1 and SD2 values are shown to be
different in terms of temporal structure.

Temporal information is important for the detection of non-
stationary behavior [2]. A simple but effective techniqueto
include temporal features is to animate the construction of the
poincare plot [1]. Hence, to reflect temporal variation, we
developed a new method to incorporate temporal information
in relation to the line of identity which can be used in
quantification of the temporal dynamics of the system.

III. NOVEL FEATURES

In this section, we introduced our new features: Global
Occurrence Matrix (GOM) and Co-Occurrence Matrix (COM).
Both of them are defining in the base of point’s distribution in
relation to the line of identity. For this purpose, firstly, the
theoretical development of each feature has been given and
then they have been used for distinguishing different groups of
subjects which is followed by statistical analysis.

A. Global Occurrence Matrix (GOM)

As mentioned earlier, the line of identity in the poincare
plot is defined as the line that passes through the origin at an
angle of 45° with x-axis [9]. We have defined our new features
in a poincare plot dependent of the line of identity i. e. decision
about a point is made based on its position with respect to the
line of identity on the 2D poincare plot. In the proposed GOM,
the points of the plots are partitioned into three parts (Fig. 3):

. Points which are up the line of identity (U);
. Points which are on the line of identity (O);
e Points which are down the line of identity (D).

The decision about a point as to whether it belongs to one
of the above three classes is made based on the point’s distance
to the line of identity.For measuring the distance of a point to
the line, we used:

Dist=(ax + by +c)/(a+b)" (5

in which for the line of identity and points in Poincare plot,
we have: a = -1; b = 1; ¢ = 0. So for points P; (x;, y;) of the
poincare plot, we have:

Dist;=(yi—x)/(2)"*  (6)

In which X and y are as mentioned in (1) and (2) and i = 1,
2, ..., n. Therefore the status of the point P; with respect to its
distance to the line of identity is defined as follows:
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Figure 3. Three classes in calculating GOM

e If Distj> 0 then P;e (U)
e If Dist;= 0then P;e (O)
e If Disti< 0 then P;e (D)

These three classes are shown in Fig. 3. After defining the
classes of all the points, we counted the members of each class
for constructing GOM.

GOM is a 3x1 matrix which elements are defined as
follows:

GOM = [Ny No Np] (M

In which Ny is the number of points in class U, Ng is the
number of points in class O, and Np is the number of points in
class D.

B. Co-Occurrence Matrix (COM)

For defining the second feature, we focused on local
temporal behavior of the points in relation to each other
dependent on the line of identity. For this purpose, we used the
same definitions which were mentioned in previous section
such as three different classes U, O, and D. But the difference
is that in COM, we considered two following points P; and Pj4;
and so the analysis corresponds to at least three consecutive RR
intervals of the RR interval time series. Therefore, in COM we
should count nine different behaviors dependent to points’
classes in relation to each other and line of identity which are
defined as follows (Fig. 4):

o If (PicU) & (Pis1€U) then UU = UU +1
o If (PieU) & (Pi1€0) then UO = UO +1
o If (PieU) & (Pi,€D) then UD = UD +1
° If (P|EO) & (Pi+1EU) then OU = OU +1
e 1f(P,c0) & (P,1,€0) then 00 = 00 +1
e 1f(P,c0) & (P,1,€D) then OD = OD +1
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Figure 4.Temporal Variations in COM

If (P;e D) & (Pj,1€ U) then DU = DU +1
If (P;€ D) & (P; 1€ 0) then DO = DO +1
If (P;€ D) & (P;,,€ D) then DD = DD +1

Hence, COM is a 3x3 matrix which elements are defined
as follows:

oo ue up
coM = |opUy 00 0D (3
oy Dp Do

IV. DISCRIMINATION OF HEART ARRHYTHMIA

In order to validate the proposed features, GOM and COM,
we have used them to discriminate four groups of subjects
(Arrhythmia, Congestive Heart Failure (CHF), Atrial
Fibrillation (AF) and Normal Sinus Rhythm (NSR)).For each
groups, we calculate GOM and COM separately.

The data from MIT-BIH Physionet database [10] are used
in the experiment. In this study, we have used 15 long-term
ECG recordings of subjects in normal sinus rhythm from
Physionet Normal Sinus Rhythm database [10]. Furthermore,
we have also used NHLBI sponsored Cardiac Arrhythmia
Suppression Trial (CAST) RR-Interval Sub-study database for
the arrhythmia data set from Physionet. Subjects of CAST
database had an acute myocardial infarction (MI). The
database is divided into three different study groups among
which we have used the Encainide (e) group data sets for our
study. From that group we have chosen 15 subjects belong to
subgroup baseline (no medication)[10]. Also, we have used 15
long-term ECG recordings of subjects with CHF from
Physionet Congestive Heart Failure database along with 15
ECG recordings of subjects with Atrial Fibrilation from
Physionet Atrial Fibrilation database [10].The original long
term ECG recordings in every four groups were digitized at
128 Hz[10].

Table 1.p-Value Results for COM Parameters

Groups COM Parameters
ur Uvo UD oU 00 oD DU Do DD

NSR, CHF 0.003" 0.2321 0.5502 0.5810 0.0169" 0.0273* 0.8541 0.3010 0.0731
NSR, CAST 0.3345 0.4906 0.2322 0.5198 0.6792 0.4482 0.1902 0.4762 04212
NSR, AF 0.0094" §8.29E-6" 0.0345" 6.66E-6" 6.60E-6" 8.29E-6" 0.0130" 6.68E-6" 7.76E-5"
CHF, CAST 0.0203" 0.0891 0.2701 0.2797 0.0386" 0.0564 0.3825 0.1826 0.0934
CHF, AF 0.0009" 1.02E-5" 0.0365" 2.86E-5" 6.60E-6" 6.66E-6" 0.0430" 6.66E-6" 5.25E-5"
CAST, AF 0.0006" 0.0011" 0.9268 0.0001" 1.55E-5" 1.36E-4" 0.6791 5.25E-5" 8.31E-6"
Total 9.13E-5" 4.43E-6" 0.1256 4.42E-6" 1.91E-7" 6.61E-7" 0.0929 1.13E-6" 2.50E-6"




Table 2.p-Value Results for GOM Parameters

Groups GOM Parameters
U o D
NSR, CHF 0.0024" 0.0535 0.5970
NSR, CAST 0.8003 0.7827 0.5813
NSR, AF 0.0019" 6.70E-6" 1.02E-5"
CHF, CAST 0.0076" 0.0730 0.1542
CHT, AT 0.0001* 6.68L-6" 3.53C-5°
CAST, AF 0.003* 4 29E-5* 0.0002*
Total 2.82E-5* 5.30E-7* 6.91E-6"
V. RESULTS

For comparing the results and evaluate the proposed
parameters, we have used statistical analysis which are
explained in details in next section.

A. Statistical Analysis

In this study, we have used Kruskal-Wallis test to define
the level of significance of our proposed features.

Kruskal-Wallis test is a nonparametric version of the
classical one-way ANOVA, and an extension of the Wilcoxon
rank sum test to more than two groups [2]. The assumption
behind this test is that the measurements come from a
continuous distribution, but not necessarily a normal
distribution. The test is based on an analysis of variance using
the ranks of the data values, not the data values them.

In our study, this test has been used to evaluate the
hypothesis for GOM and COM separately, once for each two
groups and then for all four groups as mentioned total in Table
1 and Table 2. The p values obtained from Kruskal-Wallis
analysis are shown in Table 1for COM andin Table 2 for
GOM.In case of p< 0.05 to be considered as significant, we can
see that COM and GOM would show the significant difference
between groups which p value is shown by “*’ in Table 1 and
Table 2.

The results show that GOM discriminate CHF from NSR
by p<3E-3; AF from NSR by p<7E-6; CHF from arrhythmia
by p<8E-3; CHF from AF by p<7E-6; and arrhythmia from
AF by p<5E-5. Hence, this feature is able to discriminate this
four groups by p<6E-7.

In the same way, COM discriminate CHF from NSR by
p<3E-3; AF from NSR by p<7E-6; CHF from arrhythmia by
p<3E-2; CHF from AF by p<7E-6; and arrhythmia from AF
by p<9E-6.Hence, this feature is able to discriminate this four
groups by p<2E-7.

B. Comparison with SD1 and SD2

In this section, we have used Kruskal-Wallis test for SD1
and SD2, which p values are displayed in Table 3, to compare
these results with those were obtained from proposed features
GOM and COM. The comparison between Table 1, Table 2,
and Table 3 show that SD1 and SD2 are able to distinguish

Table 3. p-Value Results for Standard Descriptors

Groups Standard Descriptors
SD1 SD2
NSR, CHF 0.0013 0.0595
NSR, CAST 0.0002 0.0596
NSR, AF 0.0131 0.0661
CHF, CAST 0.4347 0.4906
CHF, AF 0.0115 0.0169
CAST, AF 0.0028 0.0058
Total 4.6145E-5 0.0076

arrhythmia from normal subjects whereas our novel proposed
features not only discriminate arrhythmia from normal, but also
they are able to differentiate different arrhythmia from each
other.

VI.  DISCUSSION

The main motivation for using poincare plot is to visualize
the variability of any time series signal [6]. In order to this
qualitative approach, we proposed two novel features, GOM
and COM, to extract temporal variations in a poincare plot.
The proposed features have been able to demonstrate useful
information about the temporal variation of the Poincare plot
and unlike SD1 and SD2; they are not dependent to the kinds
of arrhythmia and are able to classify different arrhythmia. For
example, parameters such as U, UU, and OO were able to
distinguish five of six subjects in this study. So in the future,
they may be used as efficient features for temporal and point
to point analysis of poincare plot.
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